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Periodic conductance resonance in a constricted channel 
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Abslmct. The measurement of conductance through a narrow channel intempted by WO 
controlled potential barriers has been reported recently. Reproducible periodic osicllations 
of theconductanceasafunctionof the gatevoltage were observed. By includingthechange 
in resonant levels with chemical potential, we have used a tunnelling mechanism through 
localized changing levels in a modified Coulomb blockade model to explain this effect. In 
order to get rid of any unknown model parameters so as to justify our modified Coulomb 
blockade model, instead of the direct comparison of the period of conductance oscillations, 
we directly compare the box capacitances both from our calculation and from the value 
derived from the experiment. 

1. Introduction 

In a recent paper, Meirav et a1 [l] have announced their experimental discovery of the 
controlled conductance oscillations, which are periodic in the electron density of a 
narrow channel intempted by two intentional barriers on a GaAeAI,Ga,_& het- 
erostructure. This experiment, in which the locations of two barriers are known exactly, 
has established the relation between the period of the oscillations and the length of 
an isolated segment between the barriers. They have partially confirmed a previous 
conjecture [2] of the electron-density-related conductance oscillations in one-dimen- 
sional quantum wires, based upon the assumption of the existence of two dominant 
charged impurities along hte narrow channel. However, the precise nature of these 
resonances has not been clear. By including the change in resonant levels with chemical 
potential in a modified Coulomb blockade model (MCB), we use a tunnelling mechanism 
through localized charging levels to explain this remarkable effect. 

The related conductance oscillation phenomenon was first discovered by Scott- 
Thomas el a1 [3] who attributed it to the formation of a charge-density wave. Later, it 
was pointed out by Van Houten and Beenakker [4] in a comment that this effect could 
be accounted for by the Coulomb blockade (CB) of electron tunnelling. Unfortunately, 
as was argued in the replay from Kastner ef a1 [5],  the calculated energy scale was 16 
times larger than that measured in the experiment. This looks like casting doubt on the 
explanation using the CB model. Glazman and Shekhter [6] presented a more detailed 
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theoretical study on a similar situation. However, as will be shown below, their theory 
alsosuffersfrom anenergy scale three timeslarger than that measured in theexperiment 
111. Does this mean that the conclusive experimental evidence completely rules out the 
possibility of the CB model as an explanation for this phenomenon? Furthermore, where 
does this large discrepancy come from? In this letter, we argue that, if we properly 
include the change in resonant levels with the chemical potential in a MCB model, our 
prediction can quantitatively agree with the experimental observation [l]. 

In section 2, the theoretical model is presented and, in section 3, the numerical 
estimations and the comparison with the experimental results are carried out. The last 
section is devoted to the related discussions. 

2. ModBed Couiomb blockade model 

Let us first assume U, to be the total energy of the ground state with n electrons in an 
isolated box between two barriers. Within the framework of density functional theory 
[7], the topmost electron state (associated with the energy cost of the last electron added 
to the box) is assigned an energy 

Then we obtain a set of so-called resonant levels {E,,} (n = 1, 2, 3, . . .). Also, when 
Lo z 500 n m  and WO 3 200 nm, the kinetic energies of the electrons in a box can be 
ignored compared with their interaction energies. As far as the interaction energies of 
the electrons are considered, U, can be expanded as [7] 

where CY, p, 17 and L are constants, in which CY is related to the capacitance of the box and 
is quite independent of the detailed structure of the electronic states in the box, and L is 
the coupling constant between the box and the one-dimensional system outside the box. 
n is the number of electrons within the box, and pL is the average linear electron density 
outside the box. From equations (1) and (2) we have 

These resonant levels {E.} will depend on the chemical potential p only through the 
Linear electron density pL. Therefore, we get 

It is customary to choose the bottom of the electronic energy dispersion as the energy 
reference point in an ab-inifio calculation. Then eV, can be regarded as the difference 
between the chemical potential p, of the conductive substrate, which is fixed, and the 
electron chemical potential p of the interface between the top layer of GaAs and the 
AI,Ga, -,As layer. We can set, therefore, Sp = ye SV,, where y < 1 is a ratio parameter 
determined by the self-consistent calculation. 



Periodic conductance resonance in a constricted channel 9991 

Let yn be the value of the chemical potential outside the box which is in resonance 
with the level E, in the box. Then we have 

W" = ~ n ( P n )  (5) 

aP=yn+l  -pm =cu+lz[dyn+I) -P( I (n) l=  (Y+aglD(y)ay (6) 

ay = - '%lD(P)I = (7) 

and the period of V,  (or y) in the conductance oscillations will be given by 

or equivalently by 

with K = 1 - lzg,&). 
Assuming that the observed peaks in the conductance are due to the many-body 

resonant tunnelling mechanism through the resonant levels {En},  we can write down the 
conductance, at finite temperature, using the Landauer [8] formula 

where we have assumed a Fermi-Dirac distribution for the electrons outside the box, 
the assumption also used for fitting in [l]. Furthermore, near a resonant peak position 
Vr, we can expand the argument of the cosh term in equation (8) as 

[E,(VJ - k@g)1/2kBTc = [aEn(vg)/aV, - a~(v,)/av,l[(v, - Vr)/2kBTci. (9) 

(10) 

According to the experiment in [l], we can define the thermal peak width by 

av = kB Te/[ar(vg)/avg - a~,(v,)/av,I  
where T, is the electron temperature. In [l], Meirav et al. by treating {E"} as a set of 
single-particle resonant energy levels, have implicitly set aE,/aV, = 0. We point out 
that the resonant levels {E,,} in equation (3) results from the Coulomb interaction 
between the electrons within a box. The screening of Coulomb interaction changes with 
the number of electrons in the box, or equivalently the chemical potential in the leads. 
The change in screening will shift these resonant levels. The inclusion of this shfit is 
crucial for the MCB model. It leads to renormalization of the energy scale to reach 
quantitativeagreementwith theexperiment [ l ,  91. At hightemperatures(T, 3 500 mK), 
the electron temperature approaches the measured temperature T .  

The box-capacitance-related constant (Y can be easily estimated as 

(Y - [ ~ ' / ~ Z E ~ E ~ ~ L ~ ] [ ~  + In(Lo/Wo)] = ez/Chx (11) 
where LO and WO are the length and width of the box, is the effective dielectric 
constant of the box which is determined by the geometry-related screening of the ISIS 
structure (solving the Poisson equation) and the screening from the electrons within the 
box (using the Hartree-Fock approach). C,,, is the bare box capacitance which is 
proportional to Lo and weaklydependson theelectricwidthofthechannelasisexpected 

For a non-interacting ID electron gas, the density of states per unit length can be 
~91. 

calculated from 

where m* is the effective mass of the electrons, and is the bottom of thejth subband. 
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Since &&)/gl&C) = 6VJ2(Vg - V*), we may regard g&) as a constant in a range 
much smaller than V,  - V,,, where V ,  is the threshold gate voltage, related to the 
bottom of the lowest subband energy dispersion. 

The coupling constant d can be evaluated from 

d - [e2/2n~o~.n]{B + QIWO/(L - Lo - 2Lb)]* + In[(L - Lo - 2Lb)/w,]} (13) 
where L is the length of the ID channel. From the above discussions, we know that g&) 
is a constant only in the asymptotic region V, + Vtb. When V,  - V,h is small, g&) 
usually increases with V,. In this asymptotic region, we can define the so-called asymp- 
totic gate capacitance CarympColie by the maximum box-related capacitance C,, [9]: 

e(L - L O  - 2Lb)PL. = Casymptotis(Vg - vth) 
= [ ( L  - LO - 2Lb)/LO]f[f + In(LO/WO)l/{t + In[(L - LO - 2Lb)/wO]}I 

x G"vg  - Vth) (14) 
where C,, - A&o&,ftLoWa/d is mainly determined by the geometrical structure of the 
box, and Lb is the barrier width. Here, d is the thickness of the AI,Ga, .,As layer, and 
A is the local correction factor due to the existence of the top gate. The calculation of A 
is rather complicated. We shall adopt the numerical result in [9] to fix C,,, directly. The 
estimations of equations (11) and (13) could be much more accurate if the condition 
L + Lo + WO is well satisfied. 

3. Numerical estimations 

Using the experimental data given in 191, i.e. Lo = 700 nm, WO = 500 nm for sample 2 
and Lo = 600 nm, WO = 450 nm, for sample 3, we estimate from equation (11) that 
the values of 01 for sample 2 and sample 3 are 0.301 meV and 0.343 meV, respectively 
(taking = 12.5). The experimental measurement, i.e. a = K 6p = eyK SV, with e 
SV, = 0.95 meV, l /yK = 2.6,forsample2andeSVg = 2,0meV,l/yK = 3.5,forsample 
3 [9], gives the values of (Y as 0.365 meV and 0.571 meV, respectively. By using the 
theoryofGlazmannandShekhter[6],itiseasytoshowthatcu= (1 - K)Sp = ey(1 - K )  
SV,. Because we know from the experiment [9] only the values of yK and e SV,, we 
cannot quantitativelycompare the predictionin [6]withexperiment. Clearly, ourpresent 
MCB model has successfully removed the large discrepancy between the theory and the 
experiment compared with the previous CB model [4]. The variation in V, shifts the 
chemical potential and the resonant levels at the same time. The small value of K 
indicates that the change in the resonant levels with V,  is quite considerable. We must 
emphasize that we can directly compare only the bare box capacitance both from our 
calculation and from the value derived from the experiment to validate our MCB model 
because in our model we do not know the exact value of the parameter K. This approach 
is expected to be quite reliable since no adjustable parameters go into our calculation. 
We can see from this simple comparison that the agreement is reasonably good. We thus 
believe that the phenomenon observed in [l] can be explained by our present theory. 

Furthermore, from equation (14) we can calculate the density of states per unit 
length: 

glD(r) = Carymptotic/eZ(L - LO - 2Lb) = (l/ezLO) 

113 + 1n(L0/w0)1/{8 4- - LO - 2Lb)/wOl)lcmm/y (15) 
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Table 1. Calculation results. 

Theory Experiment 

Bare box capacitance C,. = (81.) 
Scaled density of states y g l D ( p )  (lon pm-’ J-’) 
Coupling constant A (lO-’fpm J )  
Slope of thermal width e dV/k,T. = l/yK 
Ratio parameter y = yK + yAg&) 
ID densityofstaIesg,,(p) (lOUpm-‘ J-’) 
Effectivecapacitance CCn = yKCh (10-I6F) 
PeriodofoscillationsedV, = 6p/y = n/yK(meV) 

F) 5.316 
0.558 
1.084 

2.6 
0.99 
0.564 
2.101 
0.78 0.95 

which is in accordance with the experimental fact that the slope dpJdVgis a constant in 
this region. As discussed in [6], it is also the pre-condition for observing the periodic 
conductance oscillations in the experiment. 

On the other hand, from equations (4) and (7) we can get 

aE.(Vg)/aP = 1 - K = Ag*D(P). (16) 
Furthermore, from equation (10) we know that this constant l/yK is, in fact, the 
slope e SV/k,T, given by experiment in [l, 91. This confirms from the experiment the 
soundness of the approximation in equation (15). From equation (7) we thus conclude 
that the period of conductance oscillations is a constant which is in agreement with the 
experiment in [ l ,  91. 

As a numerical example, we consider sample 2 in [9]. We take mx = O.067me, 
C,Je=l.OmV-l, tee= 12.5, L = 3 p m ,  Lo=700nm, Lb=IOOnmand Wo=500nm. 
We list all the calculation results in table 1. 

The theoretical prediction of e SV, is close to the experimentally measured value. 
Considering that equations (11) and (13) are not the exact estimations, we thus believe 
that our MCB model is at least qualitatively applicable. Unfortunately, the direct cal- 
culation of y is rather complicated, which needs the self-consistent calculation of both 
Schrodinger’s and Poisson’s equations; we have used the experimental value of $from 
the slope of thermal width and our theoretical value of yAg,&) to calculate y above. 

4. Discussion 

Compared with the usual CB model [4] in which e SV, = ez/yCb,, our theory predicts 
that the period of the observed conductance oscillations is determined by an effective 
box capacitance, defined by C, = YKCb,, instead of the bare box capacitance c b , p  c,, 
is also the capacitance measured in the experiment [l, 91. 

From the experiment 11.91 we know that the variation in peak heights is unpre- 
dictable. This may be ascribed to the effect of impurity disorder since thermal cycling 
changes the height of conductance peaks but not the period of the conductance oscil- 
lations. We can infer from equation (9, therefore, that A&, T,) (n = 1,2,3, . . .) are 
affected by the impurity distribution. Because a magnetic field can change only the 
height of conductance peaks but not the peak width, and because e, or the Coulomb 
interaction between the electrons in the box, is insensitive to the magnetic field, we 
conclude from equation (7) that the period of conductance oscillations should not be 
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affectedby avariationinthemagneticfield.Thishasbeenprovedinarecent experiment 

When the electron density is high, the kinetic energy term, which is ignored in 
equation (2). will become important compared with the interaction energy term. We 
expect that these overlapping broad oscillation peaks will be greatly weakened and even 
disappearathighelectrondensity. Whentheelectrontemperatureislow(T, s 500 mK), 
the experimental observation of the saturation of the thermal peak width [9] may be 
attributed to the electron heating in the system. Considering that ap,,(V,)/JV, = 
em*/.&* is a constant over a larger range of chemical potential p or gate voltage V,, we 
believe that the one-dimensionality (of the narrow wire) outside the box may not be 
essential in this experiment. If the gate voltage V, - V ,  is very small, there will be 
several periods overlapping since the density of states generally cannot be a constant 
within this region. This has been confirmed by experiment [lo]. Furthermore, from 
this theory, we see that the discretization of {E"} is essentially a classical electrostatic 
phenomenon. On the other hand, resonant tunnelling is a quantum phenomenon. It is 
remarkable that the experiment showssuch a combination of these two. The calculation 
on the magnetic field and temperature dependences of the conductance peaks will be 
published elsewhere. 

P O I .  
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